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Abstract
The concept of “Gleisberg cycle” arose from the analysis of a small amount of data for a 

series of Wolf numbers (WSN), which are characterized by varying degrees of reliability and with 
the key role of cycles 5–7 of the Dalton minimum. Back in the thirties of the last century, when 
analyzing the first 16 cycles was done, Gleisberg noted the frequency of their maximums in seven to 
eight cycles, and later gave an updated value of the period — about 80 years. In the works done over 
the past 60 years, this period is evaluated within 80–110 years. A number of researchers allocate a 
specific value for the Gleisberg cycle period equals to 88 years. Since different authors analyzed a 
series of Wolf numbers of different lengths, it makes sense to investigate the influence of the length of 
the series itself on this period.

The paper analyzes the long-period components of WSN versions v1 and v2. The connection 
between the period and the length of the series is found through the sine approximation of 
the corresponding fragments. An increase in the sine period from 82 to 110 years (for v1) was 
obtained with an increase in the length of the series from 18 to 24 cycles and the conditions for the 
local manifestation of the 88-year harmonic. The initial periodicity of the maximums of seven to eight 
cycles is transformed into ten to eleven cycles.

The WSN series includes recovered data from 1749 to 1849 and further on, regular 
observation data — reliable data. The dependence of the period on the length of the series, that is, on 
the share of reliable data, is associated with the inconsistency of the characteristics of 
the reconstructed and reliable series and casts doubt on the existence of the Gleisberg cycle or 
“secular” harmonic in the WSN readings in the 1749–2015 interval. Changes in the land cover by 
temporal analysis.

Introduction

The persistent interest in long-period solar activity (SA) cycles, including 
the Gleisberg cycle (which is often associated with the “secular” cycle), is 
associated with the manifestation of SA minimum / maximum epochs in everyday 
life. Back in 1939, Gleisberg, relying on the Zurich series (1750–1928) and 
smoothing the maximums of the cycles by four values, identified two maximums 
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and two minimums among them, which indicated the long-period component of 
the series (the Gleisberg cycle) with a frequency of their maximums/minimums of 
seven to eight cycles [1]. In later works [2, 3] a refined value of the period of about 
80 years is given. Such an estimate can be easily obtained by approximating the 
amplitudes of these sixteen cycles with a sine, the parameters of which are found 
by the least squares method (OLS). The result, with the best value for the period of 
82 years, is presented in Fig. 1, the dots mark the amplitudes themselves, along the 
horizontal axis of their date. Such an approximation satisfactorily describes no 
more than 18 cycles and its character is largely determined by cycles 5–7 of 
the Dalton minimum (MD).

Fig. 1. Sine approximation of the amplitudes of cycles 1–16

In the works of various authors on the analysis of the WSN series itself, 
made over the past 60 years, the period of the Gleisberg cycle is estimated within 
80–110 years. Researchers often identify a specific value for the period which is 
equal to 88 years [4–5]. Since different authors analyzed a series of different 
lengths, it makes sense to investigate the dependence of the period of the 
approximating sine on the length of the series itself, and besides this:

• To indicate the reasons for the growth (instability) of the period of 
the approximating sine.

• Point out the possible asymptotics of this growth.
• To specify more clearly such concepts as “period of the low-frequency 

component” and “epochs of minimum/maximum SA”.
Along with the classical version of the WSN series, its new version is also 

considered in the work. Since July 2015, the Belgian Center for the Study of the 
Sun (http://sidc.oma.be) has introduced new rules for calculating the monthly Wolf 
numbers, according to which the WSN series was recalculated from 1749 to June 
2015. The ratio of the cycle maxima in the new v2 and old v1 versions of the WSN 
series is demonstrated by Fig. 2 [6]. Correction of a significant part of the old 
version of the series is formal, but the amplitude correction of cycles 10 and 
18–24 will affect the “secular” component of the new version. In this work, 



7

the presentation of the material and results are given for the old version of 
the series v1, the results associated with the new version v2 are marked or 
commented on.

Fig. 2. The ratio of the maxima of the cycles

Initial data
Most of the results on the analysis of WSN were obtained before 2015, i.e., 

for version v1, and it is natural to rely on these developments. According to works 
[7–8], the long-period part of the v1 series, which includes components with a 
period of more than 24 years, is closely related to the envelope of the cycle maxima 
and serves as a geometrical place for the mean values of the cycles. This 
determines the choice of the source material, since Gleisberg analyzed the envelope 
of the cycle maxima. In this paper, we analyze the long-period components of the 
series of versions v1 and v2 (smoothed series of monthly Wolf numbers since 
1749). 

   Fig. 3. Spectrums of WSN (a); long-period components (b)
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The spectra of these series are presented in Fig. 3a, where the Ox axis is in 
reverse months, and the low-frequency part of the spectrum is labeled. The long-
period components corresponding to the marked frequency range are displayed in 
Fig. 3b. The dots mark the mean values of the cycles which, for the v2 series [6], 
are well superimposed on the long-period components — the time axis Ox in years.

Sine-approximation of fragments of long-period components

Let us compare the approximations of two distinctive lengths of the low-
frequency component of the old version of the series: a shortened fragment of 
eighteen cycles (1749–1954.37) and a long fragment up to the maximum of cycle 
24 (1749–2014.376). The result of their approximation for sin((2π/T) + φ) is 
presented in Fig. 4. The period and phase of the sine were found by the least 
squares method, that is, by the minimum value of the sum squares of deviation 
(vertical axis) when scanning the corresponding rows with sine. The period was 
tested within 50–200 years (horizontal axis), phase 0…2π. The series under study 
were preliminarily reduced to a commensurate scale — after subtracting the mean 
they were normalized to the square root of the variance. For the first row the 
smallest deviation is observed at a period of 84 years, for the second — at 
110 years, the values of the phases at which the minima were reached are not 
indicated.

Fig. 4. Result of approximation of two options of long-period components by a sine

We use this approach to estimate the period of sine approximation of series 
of different lengths. The dependence of the period of the approximating sine 
(vertical axis in years) on the length of the series in cycles (the beginning of 
the cycle and its maximum) is shown in Fig. 5. The period grows with increasing 
row length and the 88-year harmonic appears in the old version of the series. The 
initial periodicity of the peaks of seven to eight cycles was transformed into ten to 
eleven cycles.
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Results and Discussions

There are two important points to note:
• The above-mentioned estimate of the period of the Gleisberg cycle of 

80–110 years (the results obtained by different authors at different times) 
coincided well with the ordered growth of the period from 82 to 110 years 
obtained in the work.

• The conditions for the local manifestation of the 88-year harmonic are 
clearly traced.

Fig. 5. Dependence of an approximating sine period on length of WSN; v2 – (+)

It is clear that the instability (growth) of the estimate of the period of the 
“secular” harmonic complicates the interpretation and extrapolating it to the 
external time interval and identifying the SA minimum/maximum epochs. This 
behavior can be associated with an increase in the proportion of reliable data 
(cycles) in the analysis. Recall that the original series of monthly average Wolf 
numbers consists of the reconstructed series Wrest (from 1749 to 1849) and a 
reliable series of Wtool (regular instrumental observations from 1849 to the present), 
i.e. W = Wrest � Wtool. Combining fragmentary data [9] with different density of 
observations, amplitude resolution and scaling will break the consistency of 
temporal fragments of different scales (for example, the structure of cycles and 
their relationship). All this manifested itself during the formation of the restored 
series. In the above mentioned works [7, 8] significant differences in the behavior 
of the series Wrest  and Wtool  are shown, the properties of the region of cycles 5–7 
were significantly “distinguished”. With a series length of 18–19 cycles, a certain 
balance of properties of the restored and reliable parts is still preserved, and the 
Dalton minimum determines the formation and local manifestation of the 88-year 
to 90-year harmonic. A further increase in the proportion of reliable data shifts this 
balance in favor of the Wtool series with a smoother and more ordered long-period 
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component (Fig. 3b), which leads to an increase in the period. When analyzing 
only the Wtool series, the period of the approximating sine is 150 years [10], this 
corresponds to the periodicity of the maxima of fourteen cycles, and we have, as it 
were, the saturation of the period with the leveling of the role of the Wrest series, 
which corresponds to the concept under consideration. We simply state the same 
period for the new version Wtool equal to 131 years [6], taking into account the 
formal nature of the transformation of a significant group of cycles. Strictly 
speaking, the inconsistency of the parameters of the reliable and reconstructed 
series casts doubt on the existence of the Gleisberg cycle or “secular” harmonic in 
the WSN readings in the interval 1749–2015.

A different situation arises if one relies on the “good” data of the Wtool 
series to reconstruct the “bad” data of the Wrest series. Then we get “consistent” 
(probably without the Dalton minimum) behavior of the long-period part over 
the entire interval of 1749–2015 and an “adjusted” estimate of the average values 
of the cycles of the reconstructed series. This scenario concretizes concepts such as 
the “period of the low-frequency component” and “epochs of minimum/maximum 
SA”. An example of such an extrapolation, with a period of the approximating sine 
of the Wtool  series of 150 and 131 years, is demonstrated in Fig. 6.

Fig. 6. Review of series v1, v2 and extrapolation of their sine approximations

Conclusion
As noted above, the concept of “Gleisberg cycle” arose from the analysis 

of small amount of data for a series of Wolf numbers of different reliability and 
with the key role of cycles 5–7. This fragment, with a low SA, coincided with a 
period of lower than average global temperatures. This justifies the presence of the 
Dalton minimum although such a connection is not obvious. Volcanic activity and 
elevated CO2 levels may have a greater impact on climate than SA change [11]. 
Weather anomalies (“year without summer”) in Europe and America in 1816, 
caused by the eruption a year earlier of the Tambora volcano on the Indonesian 
peninsula Sumbawa, are the confirmation of this [12]. The temperature and SA in 
the recent past correlate in a different way: the temperature of the Earth has 
noticeably increased against the background of a rapid decrease in average activity 
and, since about 1970, the influence of the Sun on the climate could not be 
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significant [13]. With such a variety of situations, the plot presented in Fig. 6 is 
quite real. It should be expected that the agreement of the parameters of the reliable 
and reconstructed series will correct, first of all, the Dalton minimum, towards an 
increase in its values, and will change (cancel) the concept of the “Gleisberg 
cycle”. It is reasonable not to speak about the “Gleisberg cycle” tied to the MD, but 
about the long-period component corresponding to the Wtool series and the 
corrected Wrest series. Note that a critical attitude to the restored series is expressed 
by many authors in the works of the 1978 symposium — [14]. An attempt to 
balance the timing characteristics of the cycles of the same series at the expense of 
the “lost” cycle was undertaken in the work [15]. When analyzing the fractal 
properties of the series of the annual ring widths of eleven sequoias [16], 
the Dalton minimum did not appear.

Finally, we note that the closeness of the amplitude characteristics of 
cycles 8 and 9 to the parameters of reliable cycles allows us to speak about the 
consistency of the 150-year harmonic (generated by cycles 10–24) and the WSN 
readings since 1835.

The authors would like to sincerely thank V. N. Ishkov for the attention 
and support of the theme.
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ЗАВИСИМОСТЬ ПЕРИОДА ЦИКЛА ГЛЯЙСБЕРГА 
ОТ ДЛИНЫ РЯДА ЧИСЕЛ ВОЛЬФА

Иг. Шибаев, Ал. Шибаев

Резюме
Понятие «цикл Гляйсберга» возникло из анализа небольшого объема 

данных с различной степенью достоверности и с ключевой ролью минимума 
Дальтона. Сглаживая максимумы циклов Цюрихского ряда (1750–1928 гг.) по 
четырем значениям Гляйсберг выделил среди них два максимума и два 
минимума, которые и указывали на длиннопериодную составляющую ряда с 
периодичностью максимумов/минимумов в семь–восемь циклов.

В работе анализируются длиннопериодные компоненты ряда WSN 
версий v1 и v2. Связь периода и длины ряда находится через синус-
аппроксимацию соответствующих фрагментов. Для v1 получен рост периода 
синуса с 82 до 110 лет при увеличении длины ряда от 18 до 24 циклов, т. е.  
периодичность максимумов трансформируется в десять–одиннадцать циклов. 
Неустойчивая (растущая) оценка периода «вековой» гармоники затрудняет её 
интерпретацию и экстраполяцию на внешний временной интервал.

Ряд WSN включает восстановленные данные с 1749 по1849 г. и далее 
данные регулярных наблюдений – достоверные данные. Зависимость периода от 
длины ряда, т. е. от доли достоверных данных, связана с несогласованностью 
характеристик восстановленного и достоверного рядов и ставит под сомнение 
существование «цикла Гляйсберга» или «вековой» гармоники в показаниях WSN 
на интервале 1749–2015 гг.
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